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Methods Development Group at
Lawrence Livermore National Laboratory

• Lawrence Livermore National Laboratory (LLNL)

– Located 40 Miles (64 Km) East of San Francisco, California

– A R&D  institution for science and technology applied to national security.

– Lots of parallel multiphysics codes
– Lots of big computer hardware; 9 in the top 500

1. Blue Gene/L IBM 212,992 CPU’s 478 Tflops Rmax

11. Purple IBM  12,288 CPU’s  76 Tflops Rmax
29. Atlas;  38. Minos;  47. Thunder;  61. Rhea;  241. Zeus;  414. ALC;  449. Lilac;

– Home of National Ignition Facility (NIF)

– Worlds largest laser, 192 Beams, 1.8 Megajoule per shot (same Laser MegaJoule)
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Methods Development Group at
Lawrence Livermore National Laboratory

• Lawrence Livermore National Laboratory (LLNL)

– 7000 employees; “Critical Mass” ;-) of expertise

• Methods Development Group

– Works closely with LLNL Engineers

– Supports Los Alamos and Select Department of Defense Sites

– Organized in 1975 => DYNA3D code

– DYNA3D: first full capability non-linear explicit finite element code

– Originally developed by John Hallquist
– 1989 starts LSTC to develop commercial LS-DYNA

– Predecessor to PAM-CRASH
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Methods Development Group at
Lawrence Livermore National Laboratory

• Methods Development Group

– Later developed

– NIKE3D (Implicit non-linear structural f.e)

– TOPAZ3D (Thermal f.e.)

– Current code developments

– PARADYN (Massively parallel version of DYNA3D)
– Originally  developed by Carol Hoover and Tony Degroot ~1996

– Couplings:

– Structural, Thermal and Fluid Structural (DYSMAS)

– DIABLO (Massively parallel implicit FE code)
– Originally developed by Bob Ferencz ~2001

– Couplings:

– Structural, Thermal, Advection-Diffusion, Electromagnetics

• Other LLNL code developments

– ALE3D, EMSolve, MERCURY etc.
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Outline:

• Transient Explicit Code: PARADYN
– Applications

– Formulation
– Parallel Contact Algorithms: Node-on-Segment w/ evolving surfaces

– Meshless (or Meshfree)

– Fluid-Structure Interaction
– Embedded mesh coupling w/ GEMINI (Indian Head Naval Base)

• Low Frequency/Statics Implicit Code: DIABLO
– Formulation

– Parallel Contact Algorithms: Segment-to-Segment (mortar)

– Solution/Coupling strategy

– Applications

• Future Work
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Outline: Issues in Parallel/Coupled Code Development

• Major Development Areas:  (no order)
– Contact:

– Solid Mechanics, Thermal  Mechanics, Electromagnetics

– Discretization Methods:
– Finite Elements (better for Solids, Electromagnetics)

– Finite Volume (better for Fluids?)

– Lagrangian /Eulerian/ ALE?

– Meshless (better for material failure?)

– Embedded Mesh  (Overlapping meshes)

– Solution Strategies:
– Time Integration: Explicit vs Implicit

– Non-linear  schemes, Parallel linear solvers

– Mechanics coupling schemes (Partitioned vs. Monolitic)

– Adaptivity

– Material Models:
– Solid Mechanics (Material Failure/Fracture/Multiscale)
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Transient Dynamic Analysis: Explicit Time Integration

• Transient Dynamic Analysis:
– High rate loadings typically on the order of microseconds

– Simulate; Drop tests, Pressure Vessels, Blast Loadings, Crashes, etc.

Transportation container flange detail 
(Courtesy of Dan Badders, LLNL).

Hydrodynamic containment vessel 
(LANL Weapons Engineering).

Blast loading on apartment building.
30 million degrees of freedom

(P. Papados, U.S. Army ERDC)
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Transient Dynamic Analysis: Explicit Time Integration

• Simple to parallelize
– Build static decomposition using METIS (Karypis and Kumar, 1998)

– Scales great; consider 90 million element problem
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Explicit Time Integration w/ Node-on-Segment Contact

• Explicit time integration
– Conditionally stable Δt = h/c

– Equations of motion
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Explicit Time Integration w/ Node-on-Segment Contact

– Solve for acceleration

– Update velocities and positions

– Penalty method issues; is κ sufficiently large? too large ⇒ unstable

– Lagrange multiplier method forces

– Using predictor-corrector method (Zywicz and Puso, IJNME, 1998)

– Satisfy Kuhn-Tucker constraints

– Use constrained preconditioned conjugate gradient method

– Solve matrix free

– Do dynamic partitioning using METIS

– Sometimes need to eliminate redundant constraints
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Applied load

Constrained nodes on bottom edge

Local contact with friction between the two hemispheres

Applied torque
to top hemisphere

Timing study: two nested hemispheres (Juicer)
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Timing study: Juicer
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• 9 million elements
– Scales well

– Cost 30% more than problem without contact
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Lagrange Multipliers Work Great!

• Use on most of our problems
– Costs 10-50% more

– e.g., Ford Taurus

Frontal Impact with Rigid Barrier
courtesy of Ed Zywicz

35 MPH
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Parallel Contact Search

• Automatic Contact
– Contact nodes and segments computed automatically

– Element erosion due to damage creates new contact segments

– Use Dynamic Decomposition for contact

Static decomp. and contact segs. t  = 0

Dynamic contact decomp. segs. t  = 0

Static decomp. and contact segs. t  ≠ 0

Dynamic contact decomp. segs. t  ≠ 0
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Parallel Contact Search

• Consider penetration of parallel plates
– Elements erode and node become “mass particles” to avoid tangling
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Meshfree (formerly known as Meshless)

• Meshfree avoids problems with mesh tangling
– Use shape functions based on proximity of neighbors

– Shape function supports typically spherical (or elliptical)

– e.g. Moving Least Squares (Belytschko et.al 1993)

– Produce linear exact shape functions on a cloud of points

– Parallelization similar to “Automatic Contact”
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Meshfree: Mesh tangling

mesh cloud of points

Lets shoot the potato

• Meshfree avoids problems with mesh tangling
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Meshfree: Mesh tangling

• Meshfree avoids problems with mesh tangling
– Connectivity defined “on the fly”
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Meshfree: Validation

• Compare to simulation to penetrator experimental results
(Puso, Chen, Zywicz, Elmer; 2008)
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• Compare to simulation to penetrator experimental results
– Compared spall profile experiment 660-880 mm vs. simulation 600 mm.

Rebar failure

T. Sugano et. al. Local damage to reinforced concrete structures caused by impact of aircraft engine
missiles Part 1. Test program, method and results. Nuclear Engineering and Design, 140:387-405, 1993.

Meshfree: Validation
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Fluid Structure Interaction

• What is an embedded mesh
– Avoids body fitted mesh

– For example, superpose solid body onto fluid grid

Body fitted mesh Embedded mesh

• PARADYN (parallel structural FE) coupled to GEMINI (parallel fluid FV)
– DYSMAS (Wardlaw, Ludon, Renzi, Kiddy, McKeon; 2003)

– Partitioned coupling made through embedded mesh
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Embedded mesh techniques

• Existing Embedded Mesh methods for moving meshes

– Immersed boundary methods (C.S. Peskin 1977, 2002)

– Immersed finite element methods (W.K. Liu 2004)

– Overset grid methods (W.D. Henshaw 2006)

– Mortar fictitious domain methods (Baaijens 2001)
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• Existing Embedded Mesh methods for moving meshes

– Immersed boundary methods
– Immersed finite element methods

– Enforces constraints “point-wise” between solid mesh fluid mesh
– hs << hf otherwise leaks i.e. not consistent

e.g. hs > hf 

leak

Embedded mesh techniques
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• Existing Embedded Mesh methods for moving meshes

– Overset grid methods
– Momentum/Flux not conserved across boundary
– Loose symmetry of [K] where [K]u = f
– No Leaks, Easy

Embedded mesh techniques
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• Existing Embedded Mesh methods for moving meshes

– Mortar fictitious domain methods
– Requires surface integral
– No Leaks, Conserves momentum, Retains symmetry

Apply surface integral
to constrain fluid and
solid surface velocities

Embedded mesh techniques
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DYSMAS validation: Double Walled Cylinder

Finite Volume Fluid

Finite Element Solid Mesh

Blast
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DYSMAS Validation: Ship Response to Underwater Explosion

Contours of longitudinal stress component
(Displacements magnified)

Model size:
300k shell & beam elements

Courtesy of Alan Luton
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• Implicit time integration used for problems on the order of
second-years
– Consider statics (i.e. no inertia)

– Now linearize i.e. Newton Raphson

– Must solve linear system of equations
− Use Parallel Algebraic Multigrid Solver BoomerAMG

− Developed at LLNL by Rob Falgout and team
− Available for download as part of HYPRE library

− Use Parallel multi-frontal direct solvers
− PWSMP Anshul Gupta from IBM Watson Center

» Not freely available (lease it $5000/year)
− MUMPS

» Freely available

Static / Low Fequency Dynamic Analysis:
Implicit Time Integration
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• 48x48x48 brick mesh; 345,744 degrees of freedom

Performance of PWSMP and MUMPS
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Contact Issues

• Most FE codes still use Node-on-Segment contact

• Two Types: Single Pass and Double Pass
– Why? Because its easy!

• A number of pathologies exist for both
– Particularly for structural mechanics and electromagnetics

Mesh 2

Mesh 1

Mesh 2

Mesh 1

slave side

master side
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Node-on-Segment Contact Issues

• Four issues affecting robustness of node-on-segment
1. Doesn’t satisfy patch test (esp. single pass)

uniaxial 
compression

single pass results     3D mortar results
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• Four issues affecting robustness of node-on-segment
1. Doesn’t satisfy patch test (esp. single pass)

2. Locking / overconstraint (double pass)

Node-on-Segment Contact Issues

beam with pressure 
and end moment

conforming mesh results dissimilar mesh results
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• Four issues affecting robustness of node-on-segment
1. Doesn’t satisfy patch test (esp. single pass)

2. Locking / overconstraint (double pass)

3. Non-smooth surfaces cause force jumps when sliding

Node-on-Segment Contact Issues

normals are ambiguous
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• Four issues affecting robustness of node-on-segment
1. Doesn’t satisfy patch test (esp. single pass)

2. Locking / overconstraint (double pass)

3. Non-smooth surfaces cause force jumps when sliding

4. Get jumps when slave nodes slide off boundaries

Node-on-Segment Contact Issues
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Solution: Mortar Contact

• Mortar domain decomposition developed by
(Benardi, Maday, Patera; 1992)

• Extended to general 3D large deformation frictional
contact (Puso, Laursen; 2004)
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Partitioned Coupled Approach
tn+1

tn

time
Solid Mechanics

Uzawa loop (λi+1 = κ gi + λi)

Newton
iterations

Thermal Mechanics
Uzawa loop (λi+1 = κ gi + λi)

Newton
iterations

Electromagnetics
Uzawa loop (λi+1 = κ gi + λi)

Newton
iterations
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Mortar Segment-to-Segment Results

• Mortar Segment-to-Segment solves implicit problems
Node-on-Segment can’t
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Mortar Segment-to-Segment Results

• Mortar Segment-to-Segment solves implicit problems
Node-on-Segment can’t
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Mortar Segment-to-Segment Results

• Mortar Segment-to-Segment solves implicit problems
Node-on-Segment can’t
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Mortar Segment-to-Segment Results

• Mortar Segment-to-Segment with coupled solid-thermal

Temp = 0-1

Temp = 0

Material Parameters:
Solid: Young’s modulus E = 1.0

Poisson’s Ratio ν = 0.3
CTE α = 0.0 and 1.5

Thermal: Thermal Conductivity k = 0.375
Heat Capacity c = 0.461
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Mortar Segment-to-Segment Results

• Mortar Segment-to-Segment with coupled solid-thermal

Note: Significant coupling of thermal and solid
α = 0.0 =>  etol = 1.0E-13 or better
α = 1.5 =>  etol = 1.0E-05 (okay)
Conclusion: partitioned solution method not robust
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Electromagnetics

• Applications: Rail Gun, Flux Compression Generator etc.
– Equations:

– Along interface
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Electromagnetics: Rail Gun

• Coupled solid mechanics - electromagnetics used to
simulate Rail Gun
– First of a kind implementation of electromagnetic sliding contact

− Used mortar method

– Amperes Law:               since
− B field is small inside iron armature

− B field is high in air next armature armature

– Lorentz Force:               causes net force on armature
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Electromagnetics: Rail Gun

• Coupled solid mechanics - electromagnetics used to
simulate Rail Gun
– First of a kind implementation of electromagnetic sliding contact

− Used mortar method

– Amperes Law:               since
− B field is small inside iron armature

− B field is high in air next armature armature

– Lorentz Force:               causes net force on armature
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Electromagnetics: Rail Gun
• Try to answer why Rail Guns don’t reach theoretical speed

• Currently comparing to experimental tests

• Plan to add plasma model. Plasma trails armature and carries current.

• Algebraic multigrid solver currently doesn’t work with contact: use PWSMP

Solution Data
– 1/4 Symmetry
– 1.8 million elements
– 20 time steps (3x10-6s)
– 15 hours to solve (Atlas)
– 32 partitions
– 4 threads per partition
– 128 processors total
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• “Horseshoe” design

Electromagnetics: Rail Gun
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Nuclear Reactor

• Coupled solid-thermal mechanics

Solution Data

– 1/3 Symmetry

– 75 Hexagonal Rods held by 3
restraint plates

– 390 mortar contact surfaces

– 2 million dofs

– 32 partitions, 4 threads/partition

– 128 processors total

– Neutronics package hands off
heat sources to thermo-mech code

– Thermal gradient causes rod
bending and open gaps: petaling
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Adaptivity

• Currently use just one mesh for all mechanics
– Consider thermal-mechanical problem

– 1/8 symmetry of square ring

– Solid pressure b.c.

– Thermal point sources

Thermal and stress
concentrations not
always in the same spot

Square Ring 1/8 Symmetry

Stress Result Thermal Result
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Adaptivity

• Currently use just one mesh for all mechanics
– Consider thermal-mechanical problem

– 1/8 symmetry of square ring

– Solid pressure b.c.

– Thermal point sources

Thermal and stress
concentrations not
always in the same spot

Thermal Result

Stress Result
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Work in Progress

• Couple mechanics using different meshes
– Exploit mesh mapping program

−  How to move mesh?

• Incorporate tight coupling of neutronics and hydraulics into
thermal mechanics code.
– Neutron transport affected by geometry

– Hydraulics models coolant

• Modify algebraic multi-grid solver to accommodate contact

• Extend embedded mesh technology to treat coupled solid-
electromagnetics model of rail gun

• Add “cracks” in ship hulls
– XFEM joint work with Northwestern Univ. and Indian Head Naval Base


